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Abstract

We study the buckling of a pre-stressed coated elastic half-space with the aid of the exact theory of nonlinear
elasticity, treating the coating as an elastic layer and using its thickness as a small parameter. Two asymptotic limits
are identi®ed: Ajilk=O(khAjilk) and Ajilk=O(k 3h 3Ajilk), where Ajilk and Ajilk are the elastic moduli for the half-

space and the coating, respectively, k is a mode number and h the thickness of coating. The ®rst limit corresponds
to the case when the coating and half-space exert maximum e�ect on each other and the second limit corresponds
to the classical model equation for a plate supported by an elastic foundation. For each limit the leading order

bifurcation condition is derived using two di�erent methods. In the ®rst method we derive the leading order
governing equations ®rst and then obtain from them the bifurcation condition. In the second method we derive the
exact bifurcation condition ®rst and then take the thin-layer limit. The two methods are found to yield the same

results, assuring us that the leading order governing equations are asymptotically consistent. These leading order
governing equations in the thin-layer limit are then compared with those assumed or derived by previous
researchers. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

A coated elastic half-space can be used to model the structures in a number of engineering situations,
such as surface processing and thin-®lm deposition. It can also be used as a model for thick plates
reinforced with high strength thin layers and plates on elastic foundations. The coating in such
situations is usually very thin and it is desirable to make use of this fact and develop a simple, but
rational, theory to describe its behaviour. Gurtin and Murdoch (1975) presented a general nonlinear
model of surface-stressed solids in the setting of modern ®nite elasticity. Recently, Steigmann and Ogden
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(1997) generalized the Gurtin±Murdoch theory by incorporating ¯exural sti�ness directly into the
constitutive response of the coating. They also linearized their nonlinear governing equations and
conducted a linear stability analysis. Di�erent approximate linear theories have also been used by Gille
and Rau (1984), Yu et al. (1991) and Shield et al. (1994) to investigate the linear stability properties of a
coated elastic half-space. In all these studies, simpli®cation results from the fact that e�ect of the coating
is incorporated into the interfacial continuity conditions.

In this paper we assume that a coated elastic half-space can be viewed as the limit of an elastic layer
bonded to an elastic half-space as the layer thickness becomes vanishingly small. We aim to derive the
appropriate asymptotic interfacial conditions and compare them with those used by previous
researchers.

This paper is divided into four sections as follows. In the next section, we ®rst write down the exact
linearized governing equations, boundary and interfacial conditions for a layer bonded to an elastic half-
space. The layer is assumed to have arbitrary thickness, and the layer and half-space are assumed to be
subjected to a uni-axial compression. These equations have, as dependent variables, the incremental
displacement components (the incremental displacement is the di�erence between the positions of a
material particle in the uniformly stressed con®guration and another possibly buckled con®guration).
Solving these equations following the standard procedure of linear stability analysis yields an exact
bifurcation condition which relates the critical principal stretch to kh, where k is the mode number and
h is the layer thickness. Such a linear stability analysis has previously been conducted using the exact
theory of ®nite elasticity by Dorris and Nemat-Nasser (1980), Ogden and Sotiropoulos (1996) and
Bigoni et al. (1997). Whereas these previous studies are mainly concerned with the numerical solution of
the exact bifurcation condition, our emphasis in this paper will be on analyzing the asymptotic structure
of the exact bifurcation condition. In section 3, we derive the leading order governing equations for the
two asymptotic limits referred to in the abstract. We show that these leading order governing equations
yield the same bifurcation condition as that obtained by taking the thin-layer limit in the exact
bifurcation condition. In the ®nal section we compare our leading order governing equations with those
assumed or derived by previous researchers.

2. Exact theory

2.1. Exact bifurcation condition

In this section we present the governing equations for a layer bonded to an elastic half-space and
derive the exact bifurcation condition. The exact bifurcation condition has been derived recently by
Ogden and Sotiropoulos (1996). Our attention will be focused on the thin layer limit. Both the layer and
half-space are assumed to be isotropic and compressible in their unstressed con®gurations. A certain
®nite deformation is applied to this bonded structure, giving rise to the possibility that the structure may
buckle. We choose a co-ordinate system in which the origin is located at the interface in the stressed
con®guration, the x1- and x3-axes lie in the interface and aligned with two of the three principal axes of
stretch, and the x2-axis perpendicular to the interface and pointing into the layer. Thus a representative
material particle in the stressed con®guration has co-ordinates (xi ). As the bonded structure buckles,
this same material particle moves to a new point with co-ordinates xÄi and we may write xÄi=xÄi (xj ), and
de®ne the incremental displacement components ui as

ui � ~xi ÿ xi:

We assume that the incremental deformation is plane strain and is of small amplitude. It can then be
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shown (see e.g. Dowaikh and Ogden 1991) that the linearized governing equations are given by

Ajilkuk,lj � 0, �1�
and the incremental traction on a surface with unit normal (nj ) is given by

Ti �Ajilkuk,lnj, �2�
where Ajilk are the ®rst order instantaneous moduli and their non-zero components are given by

JAiijj � liljWij

JAijij �

8><>:
�liWi ÿ ljWj �l2i =�l2i ÿ l2j � i 6� j, li 6� lj

1

2
�JAiiii ÿ JAiijj � liWi � i 6� j, li � lj

Aijji �Ajiij �Aijij ÿ si: �3�
In these expressions li and si are the principal stretches and stresses associated with the ®nite
deformation, J=l1l2l3, W is the strain energy function and Wi=@W/@li, Wij=@2W/@li@lj, si=Jÿ1liWi.
As in Steigmann and Ogden (1997) we de®ne the notation

aij �Aiijj i, j 2 f1, 2g,

gij �Aijij i 6� j,

d12 � d21 � a12 � g12 ÿ s1 � a21 � g21 ÿ s2,

2b12 � a11a22 � g12g21 ÿ d212: �4�
To ®x ideas, we shall assume that the pre-stress takes the form of a uni-axial compression along the x1-
direction so that s2=0, but most of our following analysis is valid for general pre-stress. We also
assume that the pre-stressed state is a state of plane strain so that l3=1. The principal stretch l2 can
then be expressed in terms of l1 with the aid of the equation obtained from s2=0. To simplify notation
we shall write l1 as l.

Eqs. (1)±(4) are valid for both the layer and the half-space. From now on we shall adopt the
convention whereby a symbol with an over-bar is associated with the layer, whereas the same symbol
without an over-bar is associated with the half-space. Thus, for instance, Ajilk and Ajilk are the elastic
moduli for the half-space and the layer, respectively, and the counterparts of (1) and (2) for the layer
are

�Ajilk �uk,lj � 0, �Ti � �Ajilk �uk,lnj: �5�
We look for a buckling solution of the form

�uj � �Hj�kx2�eikx 1 , uj � Hj�kx2�eikx 1 , j � 1, 2 �6�
where k is the mode number, and observing the convention made above, (u-j, H

-
j) and (uj, Hj ) are
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associated with the layer and half-space, respectively. On substituting (6a) into (5a), we obtain two
second order di�erential equations for H

-
1 and H

-
2. Solving these equations yields

�H1�kx2� �
X4
j�1

�Aj exp�k �pjx2�, �H2�kx2� �
X4
j�1

i �pj
�d12

�g12 ÿ �a22 �p2j

�Aj exp�k �pjx2�, �7�

where A
-
j are disposable constants, p-j are the four roots of

�a22 �g21 �p4 ÿ 2 �b12 �p2 � �g12 �a11 � 0, �8�

and are ordered such that p-1 and p-2 have positive real parts and p-3=ÿp-1, p-4=ÿp-2.
The counter-part of (7) for the half-space is

H1�kx2� �
X2
j�1

Aj exp�kpjx2�, H2�kx2� �
X2
j�1

ipjd12
g12 ÿ a22p2j

Aj exp�kpjx2�, �9�

where A1, A2 are disposable constants and the terms involving p3, p4 are neglected to satisfy the decay
conditions u1, u24 0 as x24ÿ1.

The six constants A
-
1, A

-
2, A

-
3, A

-
4, A1, A2 are determined by the boundary conditions

�T1 � 0, �T2 � 0, on x2 � h �10�

and the continuity conditions at the interface:

�T1 � T1, �T2 � T2, �u1 � u1, �u2 � u2, on x2 � 0: �11�

On substituting (2), (5b), (6), (7) and (9) into these conditions, we obtain six linear homogeneous
equations for the six constants. The four equations corresponding to (11) can be solved to express A

-
1,

A
-
2, A

-
3, A

-
4 in terms of A1 and A2 as

�A1 � 1

2
��d1 � d3�A1 � �d2 � d4�A2�,

�A2 � 1

2
��e1 � e3�A1 � �e2 � e4�A2�,

�A3 � 1

2
��d1 ÿ d3�A1 � �d2 ÿ d4�A2�,

�A4 � 1

2
��e1 ÿ e3�A1 � �e2 ÿ e4�A2� �12�

where

d1 �
�b2 ÿ b1
�b2 ÿ �b1

, d2 �
�b2 ÿ b2
�b2 ÿ �b1

,
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e1 � b1 ÿ �b1
�b2 ÿ �b1

, e2 � b2 ÿ �b1
�b2 ÿ �b1

,

d3 � a1 �c2 ÿ �a2c1
�a1 �c2 ÿ �a2 �c1

, d4 � a2 �c2 ÿ �a2c2
�a1 �c2 ÿ �a2 �c1

,

e3 � �a1c1 ÿ a1 �c1
�a1 �c2 ÿ �a2 �c1

, e4 � �a1c2 ÿ a2 �c1
�a1 �c2 ÿ �a2 �c1

,

and the constants aj, bj and cj are de®ned by

aj � �a11 ÿ g21p
2
j �=�d12pj �, bj � a12 ÿ a22pjaj, cj � g21� pj � aj �

with no summation on the repeated su�x j. The expressions for a-j, b
-
j and c-j have the same form except

that an over-bar is added to each of the symbols appearing on the right hand sides.
On substituting (12) into the two equations corresponding to (10), we obtain

f11A1 � f12A2 � 0, f21A1 � f22A2 � 0, �13�
where

f11 � �b1�d1 chz1 � d3 shz1� � �b2�e1 chz2 � e3 shz2�,

f12 � �b1�d2 chz1 � d4 shz1� � �b2�e2 chz2 � e4 shz2�,

f21 � �c1�d1 shz1 � d3 chz1� � �c2�e1 shz2 � e3 chz2�,

f22 � �c1�d2 shz1 � d4 chz1� � �c2�e2 shz2 � e4 chz2�, �14�
and z1=khp-1, z2=khp-2, the ch and sh standing for cosh and sinh, respectively.

The bifurcation condition is then given by f11f22ÿf12f21=0. With the use of (14), this condition can be
manipulated into the form

b1c2 ÿ b2c1 � g1�chz1 chz2 ÿ 1� � g2 chz1 shz2 � g3 chz2 shz1 � g4 shz1 shz2 � 0, �15�
where

g1 � �b1 �c2�d1e4 ÿ d2e3� � �b2 �c1�d4e1 ÿ d3e2�,

g2 � �b1 �c2�d1e2 ÿ d2e1� � �b2 �c1�d4e3 ÿ d3e4�,

g3 � �b1 �c2�d3e4 ÿ d4e3� � �b2 �c1�d2e1 ÿ d1e2�,

g4 � �b1 �c2�d3e2 ÿ d4e1� � �b2 �c1�d2e3 ÿ d1e4�: �16�
Eq. (15) is the general and exact bifurcation condition for a layer of arbitrary thickness bonded to a
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half-space. In the case when the pre-stress takes the form of a uni-axial compression, Eq. (15) can be
solved numerically to yield the critical stretch l as a function of kh.

2.2. Bifurcation condition for a half-space

The bifurcation condition for a half-space can be recovered from (15) in two di�erent ways. First,
we may take the layer and half-space to be composed of the same material. We then have aj=a-j,
bj=b

-
j, cj=c-j, ( j = 1, 2), d1=d3=1, d2=d4=0, e1=e3=0, e2=e4=1. It follows from (16) that

g1=g2=g3=g4=b1c2ÿb2c1. After some manipulations, the general bifurcation condition is reduced to

�b1c2 ÿ b2c1�ez1�z2 � P0Pez1�z2 � 0, �17�
where

P � ������������������������
a11a22g12g21
p � ������������

a11a22
p � ������������

g12g21
p � ÿ ������������

g12g21
p

a212 ÿ
������������
a11a22
p �d12 ÿ a12�2,

P0 � ÿ
�������
g21
g12

r
p2 ÿ p1
d12

: �18�

Although p1ÿp2=0 satis®es (17), it is well-known that it in fact corresponds to the trivial solution. It
then follows from (17) that the bifurcation condition for a pre-stressed half-space is given by

P � 0, �19�
which is well-known in the literature, see e.g. Dowaikh and Ogden (1991).

Alternatively, a half-space can be recovered by taking h=0. The general bifurcation condition (15) in
this limit reduces to b1c2ÿb2c1=0 which is clearly equivalent to (17).

2.3. Bifurcation condition in the thin-layer limit

Our main concern in this paper is with the stability of a coated elastic half-space. We treat a coated
half-space as the thin-layer limit of the bonded structure which we have just considered. Since the half-
space does not have a natural lengthscale, the term `thin layer' only makes sense when the thickness of
the layer is compared with a reference lengthscale. For the present buckling problem, a natural choice
for the reference lengthscale is 1/k which is the wavelength of the bifurcation mode divided by 2p. Thus
the thin layer limit corresponds to

E40, where E � kh:

For E small, the general bifurcation condition (15) can be expanded into the following Taylor series:

b1c2 ÿ b2c1 � o1E� 1

2
o2E2 � 1

6
o3E3 � 1

24
o4E4 � � � � � 0, �20�

where

o1 � g2 �p2 � g3 �p1,

o2 � g1� �p21 � �p22� � 2g4 �p1 �p2,
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o3 � g2� �p32 � 3 �p21 �p2� � g3� �p31 � 3 �p1 �p22�,

o4 � g1� �p41 � �p42 � 6 �p21 �p22� � 4g4 �p1 �p2� �p21 � �p22�: �21�

On substituting the relevant expressions into the right hand sides of (21) and simplifying, we ®nd, purely
in terms of material constants,

o1 � P0�s1 ������������
a11g21
p � s2

������������
a22g12
p �

����
D
p

,

o3 � P0�s3 ������������
a11g21
p � s4

������������
a22g12
p �

����
D
p

,

o2 � P0�s5� ������������
g12g21
p � ������������

a11a22
p � � s6�g21

������������
a11a22
p ÿ a12

������������
g12g21
p � � s7P�,

o4 � P0�s8� ������������
g12g21
p � ������������

a11a22
p � � s9�g21

������������
a11a22
p ÿ a12

������������
g12g21
p � � s10P�, �22�

where

D � 2b12 � 2
������������������������
a11a22g12g21
p

,

s1 � �g12 ÿ �g21,

s2 � �a11 ÿ �a212=�a22,

s3 � 2

�a22 �g21
� �b12s1 � �a22 �g12s2�,

s4 � 2

�a22 �g21
� �b12s2 � �a11 �g21s1�,

s5 � 2s1s2,

s6 � 2
�a11 �a22 ÿ �a212 � �a12��g21 ÿ �g12�

�a22
, �23�

s7 � 2� �b12 � �a12 �g21�
�a22 �g21

,

s8 � s1s4 � s2s3,

s9 � 4
� �b12 ÿ �a12 �g12���a11 �a22 ÿ �a212� � � �b12 �a12 ÿ �a11 �a22 �g21���g21 ÿ �g12�

�g21 �a222
,
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s10 � 2

�a222 �g221
fs1� �b12 � �a11 �a22��g21 � s2� �b12 � �g12 �g21��a22g: �24�

It can be seen from (20) that for the coating and half-space to exert the same order of e�ect on each
other, the only possibility is for the ®rst two terms b1c2ÿb2c1 (which is independent of kh ) to be
balanced by the other kh-dependent terms. Since E is small, one of the oi's must be large. An inspection
of the expressions for o1 o2, o3 and o4 shows that this in turn implies that Ajilk must be much greater
than Ajilk. This means that the coating must be much sti�er than the half-space, as one would
intuitively expect. Without loss of generality, we may assume that Ajilk=O(1). If we introduce the
notation

a � max� �Ajilk, j, i, l, k 2 f1, 2g�,

then for a large Eq. (20) takes the form

O�1� �O�a�E�O�a2�E2 �O�a�E3 �O�a2�E4 � � � � � 0: �25�

Clearly as a is increased from O(1), a balance is ®rst achieved when

a � O�1=E�, �26�

and it is the second and third terms that balances the ®rst term. After some manipulations, we ®nd that
when (26) holds, Eq. (20) to leading order reduces to

P� �s�1
������������
a11g21
p � s�2

������������
a22g12
p �

����
D
p
� s�1s

�
2�

������������
a11a22
p � ������������

g12g21
p � � 0, �27�

where s �1 and s �2 are O(1) constants de®ned by s �1=s1E, s �2=s2E. We note that this leading order
bifurcation condition has the same structure as Steigmann and Ogden's (1997) Eq. (6.30), but they are
not equivalent (see the discussion in section 4). In the next section we shall derive, from the original
governing Eqs. (1) and (5a), the asymptotic governing equations that yield the same leading order
bifurcation condition (27).

We now suppose that the coating is even sti�er. The next case of interest is clearly when

a � O�1=E2�: �28�

When this relation holds, an inspection of (25) shows that the third term is the only dominant term. By
equating this term to zero we ®nd that l=1, which means that to leading order there must be no pre-
strain. The next biggest term in (25) is the second term which is O(1/E ). In order for the third term to
balance this term, we must have lÿ1=O(E ). Thus we write

l � 1� Ef, �29�

where f is an O(1) constant. We recall that all the moduli Ajilk and Ajilk are functions of the stretch l.
We may expand these moduli about l=1 to obtain

�Ajilk � �A0

jilk � Ef �A 0
jilk � � � � , Ajilk �A0

jilk � EfA 0
jilk � � � � , �30�

where

�A0

jilk � �Ajilk jl�1� �l
�
djidlk � �m�djldik � djkdil�,
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A0
jilk �Ajilk jl�1� l�djidlk � m�djldik � djkdil�,

�A 0
jilk �

@ �Ajilk

@l
jl�1 , A 0

jilk �
@Ajilk

@l
jl�1 :

In the above expressions, ��l�, �m� and (l�, m ) are the LameÂ constants for the coating and half-space,
respectively (we have added a `�' to l to avoid confusion with the principal stretch). We may also write
down the corresponding expansions for �aij, aij, etc but it su�ces to remind the reader of the relations
(4). On substituting (29) and (30) into (20) and equating the coe�cients of 1/E, we obtain

f � 2m�l� � 2m�
��g 021 ÿ �g 012��l� � 3m� �

2m�l� � 2m�
� �A 0

1221 ÿ �A 0
1212��l� � 3m�

,

where we have scaled �g21, �g12, A1221, A1212 by 1/E 2. Hence the bifurcation condition is given by

l � 1ÿ 2m�l� � 2m�
�s1l�l� � 3m�E�O�E2�, �31�

where

�s1l � @ �s1
@l

����
l�1
� �A 0

1212 ÿ �A 0
1221,

obtained by making use of (3).
It can easily be shown that in the absence of half-space, the bifurcation condition for the layer

expands like l=1+O(E 2) in the limit E4 0. Thus the second term on the right hand side of (31) is due
to the existence of the half-space (this is also con®rmed by the fact that if the moduli l� and m for the
half-space were much smaller than we have assumed, the second term on the right hand side of (31)
would be much smaller than O(E )).

Finally, we consider even stronger coating described by a=O(1/E 3). We shall show in section 3 that
this case corresponds to the classical model for beams on elastic foundations.

An inspection of (25) shows that in this case a proper balance can be achieved if l=1+O(E 2). Then
the third term becomes of order 1/E 2 and it is balanced by the second and ®fth terms in (25). Thus we
write

l � 1� E2c, �32�

where c is an O(1) constant, and expand the moduli Ajilk and Ajilk as

�Ajilk � �A0

jilk � E2c �A 0
jilk � � � � , Ajilk �A0

jilk � E2cA 0
jilk � � � � : �33�

On substituting (32) and (33) into (20) and equating the coe�cients of 1/E 2, we obtain

c � ÿ 2m�l� � 2m�
�s1l�l� � 3m� ÿ

�m��l� � �m�
3 �s1l��l� � 2 �m�

, �34�

where we have scaled �l
�
, �m, �s1 by 1/E 3. Hence the bifurcation condition is given by
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l � 1ÿ
(
2m�l� � 2m�
�s1l�l� � 3m� �

�m��l� � �m�
3 �s1l��l� � 2 �m�

)
E2 �O�E4�: �35�

We note that the bifurcation condition (31) in the previous case can actually be recovered from (35) by
assuming that �m and �l

�
are of order E (note that the moduli of the coating for this case and the previous

case have been scaled by 1/E 2 and 1/E 3, respectively).

3. Asymptotic theory

The principal objective of an asymptotic theory for a coated elastic half-space is to simplify analysis
by incorporating all the e�ects of the coating into the boundary conditions (i.e. the interfacial
conditions) for the half-space. In this section we derive the leading order asymptotic interfacial
conditions which yield the bifurcation conditions derived in the previous section. Since as we just
observed the case Ajilk=O(1/E 2) can be recovered from the case Ajilk=O(1/E 3) by taking the
appropriate limit, we shall only consider two cases: Ajilk=O(1/E ) and Ajilk=O(1/E 3). The ®rst limit
corresponds to the case when the half-space and coating exerts maximum e�ects on each other and
buckling takes place at ®nite strains, whereas the second limit corresponds to the case that de¯ections
are large enough for bending e�ects to become important.

3.1. Case I: Ajilk=O(1/E)

In this case we scale Ajilk by 1/E and use the same symbols to denote the scaled quantities. We also
scale (u-1, u

-
2) and (x1, x2) through

� �u1, �u2� � �u=k, v=k�, �x1, x2� � �x=k, hy�,
where 1/k is now viewed as a reference lengthscale. The original governing Eq. (5a) and the expression
(5b) for the traction then become

�A2121uyy � � �A1122 � �A2112�Evxy � �A1111E2uxx � 0, �36�

�A2222vyy � � �A1221 � �A2211�Euxy � �A1212E2vxx � 0, �37�

�T1 � 1

E2
� �A2121uy � E �A2112vx�, �T2 � 1

E2
� �A2222vy � E �A2211ux�, �38�

where su�ces x and y signify di�erentiation. We look for an asymptotic solution of the form

u � u�0� � Eu�1� � E2u�2� � � � � , v � v�0� � Ev�1� � E2v�2� � � � � :
On substituting these expressions into (36)±(38) and equating the coe�cients of like powers of E, we
obtain the following hierarchy of di�erential equations:

O(1):

u�0�yy � 0, v�0�yy � 0, �39�
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O(E ):
�A2121u

�1�
yy � ÿ� �A1122 � �A2112�v�0�xy , �A2222v

�1�
yy � ÿ� �A1221 � �A2211�u�0�xy , �40�

O(E 2):

�A2121u
�2�
yy � ÿ� �A1122 � �A2112�v�1�xy ÿ �A1111u

�0�
xx , �41�

�A2222v
�2�
yy � ÿ� �A1221 � �A2211�u�1�xy ÿ �A1212v

�0�
xx : �42�

The corresponding boundary conditions which must hold on y=0, 1 are

O(1):

u�0�y � v�0�y � 0, �43�
O(E ):

�A2121u
�1�
y � ÿ �A2112v

�0�
x , �A2222v

�1�
y � ÿ �A2211u

�0�
x , �44�

O(E 2):

�T1 � �A2121u
�2�
y � �A2112v

�1�
x , �T2 � �A2222v

�2�
y � �A2211u

�1�
x , �45�

where we have anticipated that the traction at the interface is of O(1), as required by the scalings for the
half-space.

Eqs. (39) and the boundary conditions (43) imply that

u�0� � u�0��x�, v�0� � v�0��x�: �46�
Solving the second order problem (40) and (44) yields

u�1�y � ÿ
�A2112

�A2121

v�0�x , v�1�y � ÿ
�A2211

�A2222

u�0�x : �47�

In order to derive the governing equations for u (0)(x ) and v (0)(x ), we make use of (47) and re-write (41)
and (42) as

@

@y
� �A2121u

�2�
y � �A2112v

�1�
x � �

 
�A1122

�A1122

�A2222

ÿ �A1111

!
u�0�xx ,

@

@y
� �A2222v

�2�
y � �A2211u

�1�
x � �

 
�A2

1221

�A2121

ÿ �A1212

!
v�0�xx :

On solving these equations subject to the boundary conditions (45), we obtain 
�A2

1122

�A2222

ÿ �A1111

!
u�0�xx � �T1�1� ÿ �T1�0�,

 
�A2

1221

�A2121

ÿ �A1212

!
v�0�xx � �T2�1� ÿ �T2�0�: �48�

Since both displacement components are continuous at y = 0, the u (0), v (0) in the above expression can
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be replaced by the corresponding components for the half-space evaluated at x2=y = 0. Thus all the
e�ects of the coating are embodied in these two interfacial conditions.

The governing Eq. (1) applies to the half-space. We scale u1, u2, x1, x2 by 1/k and use the same
symbols to denote the scaled quantities. The displacement ®eld in the half-space then satis®es

A1111u1, 11 � �A1122 �A2112�u2,12 �A2121u1, 22 � 0, �49�

A1212u2,11 � �A1221 �A2211�u1,12 �A2222u2,22 � 0, �50�

The continuity conditions at the interface are

u1�x1, 0� � u�0��x1�, u2�x1, 0� � v�0��x1�, �51�

A2112u2,1 �A2121u1,2 � �T1�0�, A2211u1,1 �A2222u2,2 � �T2�0�: �52�

We assume that the top surface at y = 1 is traction free so that T
-
1(1)=T

-
2(1)=0. On eliminating T

-
1(0)

and T
-
2(0) from (48) and (52) and making use of (51), we obtain

A2112u2,1 �A2121u1,2 �
 

�A1111 ÿ
�A2

1122

�A2222

!
u1,11, on x2 � 0, �53�

A2211u1,1 �A2222u2,2 �
 

�A1212 ÿ
�A2

1221

�A2121

!
u2,11, on x2 � 0: �54�

Thus the original problem is reduced, to leading order, to solving (49) and (50) subject to (53), (54) and
the decay conditions u1, u24 0 as x24ÿ1.

We look for a buckling solution of the form

u1 � H1�x2�eix 1 , u2 � H2�x2�eix 1 , �55�

where the non-dimensional mode number is unity because we have chosen the inverse of the
dimensional mode number k to be our reference lengthscale. Following the standard procedure of linear
stability analysis, it can easily be shown that H1 and H2 have a non-trivial solution only if the
bifurcation condition (27) is satis®ed.

3.2. Case II: Ajilk=O(1/E 3)

In this case, the principal stretch expands as in (32). Guided by the classical plate and beam theories,
we assume for the layer that u-1=O(Eu-2) and write

� �u1, �u2� � �hu, v=k�, �x1, x2� � �x=k, hy�:

We scale Ajilk by 1/E 3 and use the same symbols for the scaled moduli.
With the scaled moduli expanded as in (33), the governing Eqs. (5a) for the coating become
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�A0

2121uyy � � �A0

1122 � �A0

2112�vxy � E2c �A 0
2121uyy � E2c� �A 0

1122 � �A 0
2112�vxy

� 1

2
E4c2 �A 00

2121uyy �
1

2
E4c2� �A 00

1122 � �A 00
2112�vxy � E2 �A0

1111uxx � E4c �A 0
1111uxx � O�E5�,

�56�

�A0

2222vyy � E2c �A 0
2222vyy � E2�� �A0

1221 � �A0

2211�uxy � �A0

1212vxx� �
1

2
E4c2 �A 00

2222vyy � E4c�� �A 0
1221

� �A 0
2211�uxy � �A 0

1212vxx�

� O�E5�, �57�

whilst the traction components from (5b) have the expressions

E3 �T1 � � �A0

2112 � E2c �A 0
2112 �

1

2
E4c2 �A 0

2112��vx � uy� �O�E5�, �58�

E4 �T2 � �A0

2222vy � E2c �A 0
2222vy � E4c2 �A 00

2222vy � E2 �A0

2211ux � E4c �A 0
2211ux �O�E5�: �59�

We look for a solution of the form

u � u�0� � Eu�1� � E2u�2� � E3u�3� � E4u�4� � � � � ,

v � v�0� � Ev�1� � E2v�2� � E3v�3� � E4v�4� � � � � :
On substituting these expressions into (56) and (57) and equating coe�cients of like powers of E, we
obtain the following hierarchy of di�erential equations:

O(1):

�A0

2121u
�0�
yy � � �A0

1122 � �A0

2112�v�0�xy � 0, �60�

�A0

2222v
�0�
yy � 0, �61�

O(E ):

�A0

2121u
�1�
yy � � �A0

1122 � �A0

2112�v�1�xy � 0, �62�

�A0

2222v
�1�
yy � 0, �63�

O(E 2):

�A0

2121u
�2�
yy � � �A0

1122 � �A0

2112�v�2�xy � ÿc �A 0
2121u

�0�
yy ÿ c� �A 0

1122 � �A 0
2112�v�0�xy ÿ �A0

1111u
�0�
xx , �64�

�A0

2222v
�2�
yy � ÿc �A 0

2222v
�0�
yy ÿ � �A0

1221 � �A0

2211�u�0�xy ÿ �A0

1212v
�0�
xx , �65�

Z.X. Cai, Y.B. Fu / International Journal of Solids and Structures 37 (2000) 3101±3119 3113



O(E 3):

�A0

2121u
�3�
yy � � �A0

1122 � �A0

2112�v�3�xy � ÿc �A 0
2121u

�1�
yy ÿ c� �A 0

1122 � �A 0
2112�v�1�xy ÿ �A0

1111u
�1�
xx , �66�

A0
2222v

�3�
yy � ÿc �A 0

2222v
�1�
yy ÿ � �A0

1221 � �A0

2211�u�1�xy ÿ �A0

1212v
�1�
xx , �67�

O(E 4):

�A0

2121u
�4�
yy � � �A0

1122 � �A0

2112�v�4�xy

� ÿc �A 0
2121u

�2�
yy ÿ c� �A 0

1122 � �A 0
2112�v�2�xy ÿ 1

2c
2 �A 00

2121u
�0�
yy ÿ 1

2c
2� �A 00

1122 � �A 00
2112�v�0�xy

ÿ �A0

1111u
�2�
xx ÿ c �A 0

1111u
�0�
xx , �68�

�A0

2222v
�4�
yy � ÿc �A 0

2222v
�2�
yy ÿ 1

2c
2 �A 00

2222v
�0�
yy ÿ �A0

1212v
�2�
xx ÿ � �A0

1221 � �A0

2211�u�2�xy ÿ c� �A 0
1221

� �A 0
2211�u�0�xy ÿ c �A 0

1212v
�0�
xx : �69�

The corresponding boundary conditions which must hold on y = 0, 1 are obtained from (58) and (59)
and are given by

O(1):

�A0

2112�v�0�x � u�0�y � � 0, �A0

2222v
�0�
y � 0, �70�

O(E ):

�A0

2112�v�1�x � u�1�y � � 0, �A0

2222v
�1�
y � 0, �71�

O(E 2):

ET1 � �A0

2112�v�2�x � u�2�y � � c �A 0
2112�v�0�x � u�0�y �, �72�

�A0

2222v
�2�
y � ÿc �A 0

2222v
�0�
y ÿ �A0

2211u
�0�
x , �73�

O(E 3):

T1 � �A0

2112�v�3�x � u�3�y � � c �A 0
2112�v�1�x � u�1�y �, �74�

�A0

2222v
�3�
y � ÿc �A 0

2222v
�1�
y ÿ �A0

2211u
�1�
x , �75�

O(E 4):

T2 � �A0

2222v
�4�
y � c �A 0

2222v
�2�
y � c2 �A 00

2222v
�0�
y � �A0

2211u
�2�
x � c �A 0

2211u
�0�
x : �76�
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In writing down these boundary conditions we have assumed that T2=O(1) and ET1 is O(1) or smaller.
We shall eventually show that satisfaction of the interfacial traction continuity conditions requires
T1=O(1). The reason that we allow the possibility ET1=O(1) is that we want to show that it is this
(wrong) scaling that yields the interfacial conditions used by Shield et al. (1994). The rule followed in
the following analysis is that if ET1 were indeed O(1), then the leading order analysis should stop at (72)
and condition (74) need not be considered, whereas if ET1 is of order E, i.e. T1=O(1), we simply set
ET1=0 on the left hand of (72) and deduce one of the interfacial traction continuity conditions from
(74).

Solving (60), (61) subject to (70), and (62), (63) subject to (71), we obtain

v�0� �W2�x�, u�0� �W1�x� ÿ yW 0
2�x�, �77�

v�1� � Z2�x�, u�1� � Z1�x� ÿ yZ 02�x�, �78�

where W1, W2, Z1 and Z2 are arbitrary functions of x. Solving (65) subject to (73), (67) subject to (75),
we obtain

v�2� � ÿ
�l
�

�l
� � 2 �m

� yW 0
1 ÿ

1

2
y2W 00

2 � � f3�x�, �79�

v�3� � ÿ
�l
�

�l
� � 2 �m

� yZ 01 ÿ
1

2
y2Z 002 � � g3�x�, �80�

where f3 and g3 are arbitrary functions of x. With v (2) and v (3) known, Eqs. (64) and (66) can be solved
for u (2) and u (3), respectively. We have

u�2�y � ÿ
3�l
� � 4 �m

�l
� � 2 �m

� yW 00
1 ÿ

1

2
y2W 000

2 � ÿ
�l
� � �m

�m
f 03 �

1

�m
f2�x�, �81�

u�3�y � ÿ
3�l
� � 4 �m

�l
� � 2 �m

� yZ 001 ÿ
1

2
y2Z 0002 � ÿ

�l
� � �m

�m
g 03 �

1

�m
g2�x�, �82�

where f2 and g2 are another two functions arising from integrations. On substituting these solutions into
the boundary conditions (72) and (74), we obtain

4 �m��l� � �m�
�l
� � 2 �m

�W 00
1 ÿ

1

2
W 000

2 � � f2 ÿ �l
�
f 03 � T1E, �83�

4 �m��l� � �m�
�l
� � 2 �m

�Z 001 ÿ
1

2
Z 0002 � � g2 ÿ �l

�
g 03 � T1: �84�

Finally, substituting the above solutions into (69) and (76) and re-arranging, we obtain
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@

@y
f��l� � 2 �m�v�4�y � �l

�
u�2�x g

� c

 
�A 0
1221 � �A 0

2211 ÿ �A 0
1212 ÿ

�l
�

�l
� � 2 �m

�A 0
2222

!
W 00

2 �
4 �m��l� � �m�

�l
� � 2 �m

�
� yÿ 1�W 000

1 ÿ
1

2
� y2

ÿ 1�W 0000
2

�
, �85�

and

��l� � 2 �m�v�4�y � �l
�
u�2�x � T2 � c

 
�l
�

�l
� � 2 �m

�A 0
2222 ÿ �A 0

2211

!
�W 0

1 ÿ yW 00
2 �: �86�

On integrating (85) from y=0 to y=1 and making use of the boundary conditions (86), we obtain

4 �m��l� � �m�
�l
� � 2 �m

�
1

2
W 000

1 ÿ
1

3
W 0000

2

�
ÿ c� �A 0

1221 ÿ �A 0
1212�W 00

2 � T2�0�: �87�

If we express the LameÂ constants �l
�
and �m in terms of the Young's modulus and Poisson's ratio for the

coating, then the left hand sides of (83) and (87), written in terms of the unscaled variables, are identical
to the corresponding terms in Shield et al.'s (1994) Eq. (12). The left hand sides of (83) and (87) are
similar, but not identical, to those of Steigmann and Ogden's (1997) Eq. (6.19).

It remains to match, at the interface, the solutions we have just found for the coating with those for
the half-space. The conditions at the interface are given by (51) and (52). Since we have assumed for the
coating that u-1=O(E ), u-2=O(1), it may seem at ®rst sight that we should have u1=O(E ), u2=O(1) for
the half-space. However, if these order relations hold, then (49) gives u2,12=0 to leading order, which
clearly does not admit a non-trivial solution which is periodic in the x1-direction. Thus we must have
u1=O(1), u2=O(1) for the half-space and we can impose the condition u1(x1, 0)=O(E ) in order to
satisfy the matching requirement u1(x1, 0)=u-1(x1, 0). It then follows from (52) that T1(0)=O(1) and
T2(0)=O(1). The result T2(0)=O(1) is consistent with (87). The right hand side of (83) now becomes
O(E ) and must be set to zero (following the rule stated in the paragraph below (76)). Hence W01=W12/2
and Eq. (87) reduces to

ÿ �m��l� � �m�
3��l� � 2 �m�

W 0000
2 ÿ c� �A 0

1221 ÿ �A 0
1212�W 00

2 � T2�0�, �88�

which resembles Steigmann and Ogden's (1997) Eq. (6.19a). Eq. (84) now becomes

4 �m��l� � �m�
�l
� � 2 �m

�
Z 001 ÿ

1

2
Z 0002

�
� T1, �89�

which, as we shall see shortly, is not involved in the leading order analysis. We note that the
displacement in the coating expands as

�u1 � h�W1 ÿ yW 0
2� � h2�Z1 ÿ yZ 02� �O�h3�, �u2 �W2 �O�h�:
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For the half-space we again scale u1, u2, x1, x2 for the half-space by 1/k and use the same symbols to
denote the scaled quantities. Then to leading order the governing equations for the half-space are

�l� � 2m�u1,11 � �l� � m�u2,12 � mu1, 22 � 0, �90�

mu2,11 � �l� � m�u1,12 � �l� � 2m�u2, 22 � 0: �91�

These are to be solved subjected to the leading order interfacial conditions

u1�x1, 0� � 0, u2�x1, 0� � v�0��x1� �W2�x1�, �92�

m�u2, 1 � u1, 2� � 4 �m��l� � �m�
�l
� � 2 �m

�
Z 001 ÿ

1

2
Z 0002

�
, �93�

l�u1,1 � �l� � 2m�u2,2 � ÿ �m��l� � �m�
3��l� � 2 �m�

W 0000
2 ÿ c� �A 0

1221 ÿ �A 0
1212�W 00

2 : �94�

With the use of (92a), Eq. (94) reduces to

�l� � 2m�u2,2 � ÿ �m��l� � �m�
3��l� � 2 �m�

W 0000
2 ÿ c� �A 0

1221 ÿ �A 0
1212�W 00

2 : �95�

The original problem is now reduced to solving (90) and (91) subject to (92a, b) and (95). We look for a
buckling solution of the form (55). On substituting (55) into (90) and (91) and solving the resulting
ordinary di�erential equations, we obtain

H1�x2� � �A� Bx2�ex 2 , iH2�x2� �
�
Aÿ l� � 3m

l� � m
B� Bx 2

�
ex 2 : �96�

The boundary condition (92b) yields

W2�x1� � H2�0�eix 1 , �97�

and after canceling the common factor eix1 the boundary condition (95) becomes

�l� � 2m�H 0
2�0� � ÿ

�m��l� � �m�
3��l� � 2 �m�

H2�0� � c� �A 0
1221 ÿ �A 0

1212�H2�0�: �98�

The boundary condition (92a) implies H1(0)=0 and so from (96a) we have A=0. On substituting (96b)
into (98), we obtain the same expression for c as in (34), and hence the same bifurcation condition as in
section 2.
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4. Discussion

In this paper we have examined the asymptotic properties of the exact bifurcation condition for the
structure of a thin layer bonded to a half-space. Two asymptotic limits are identi®ed for small kh: Ajilk

�O�kh �Ajilk� and Ajilk�O�k3h3 �Ajilk�: For each limit we carried out an asymptotic analysis based on the
original governing equations. The analysis reduces the original problem to a simpli®ed problem in which
all e�ects of the coating are incorporated into the boundary conditions for the half-space. We showed
that the reduced problem yielded the same bifurcation condition as that derived from the exact
bifurcation condition.

In Shield et al.'s (1994) analysis, the strains are assumed to be small so that all the elastic moduli are
evaluated at zero strains (i.e. at l=1). Our analysis shows that this is justi®ed if Ajilk=O(k 3h 3Ajilk).
For this case our leading order traction continuity condition (87) is identical to their Eq. (12a), but their
(12b) is inconsistent in the sense that in this equation uxxÿhvxx/2 and Tyx are of di�erent orders of
magnitude. The correct form of the shear traction continuity condition is given by our Eq. (89) which
does not appear in the leading order analysis. The latter fact implies that when the coating is much
sti�er than the half-space, the shearing at the interface can be neglected and the coating behaves as if it
were supported by an array of springs. In the engineering theory for plates on elastic foundations, the
elastic foundations are usually modeled by an array of springs. Our present analysis provides a
mathematical justi®cation for this assumption.

Steigmann and Ogden's (1997) theory assumes that bifurcation takes place at ®nite strains. Our
analysis shows that this is only possible if the half-space is sti�er than in the previous case so that it has
a stronger in¯uence. More precisely, we need Ajilk=O(khAjilk) or Ajilk>>O(khAjilk). However in the
latter case the coating has a negligible e�ect and the case of most interest is when Ajilk=O(khAjilk). In
this case the correct traction continuity conditions are given by (53) and (54). With the use of (3) and
(4), these two conditions can be re-written as

a21�u2,1 � u1,2� � hl1
l2
�W11 ÿW2

12=W22�u1,11, �99�

a12u1,1 � a22u2:2 � � hl2 �W1u2,11, �100�

where we have un-scaled u1, u2, x1, x2 by k and the moduli for the coating by kh. Assuming that solving
s2=Jÿ1l2W2(l, l2, 1)=0 yields l2=l2(l ) so that W2 (l, l2(l ), 1) 0 0, we de®ne a function B(l )
through

B�l� � h

l2
W�l, l2�l�, 1�:

We note that the factor h/l2 in the above de®nition is the thickness of the coating in its unstressed
con®guration. It can then be shown that Eqs. (99) and (100) take the form

a21�u2,1 � u1,2� � lBllu1,11, �101�

a12u1,1 � a22u2,2 � Blu2,11, �102�

where subscript l signi®es di�erentiation with respect to l. In terms of B(l ), the constants s �1 and s �2 in
the corresponding leading order bifurcation condition (27) are given by
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s�1 � klBll, s�2 � kBl: �103�
Eqs. (101) and (102) are almost identical to Steigmann and Ogden's (1997) Eq. (6.19), the only
di�erence being the extra term ÿlBkkv22 in their Eq. (6.19a). This extra term gives rise to the extra
term k 3lBkk in their expression (6.28a) for a (with s �1 and s �2 replaced by a and b, respectively, our
bifurcation condition (27) has the same form as their bifurcation condition (6.30)). This extra term
re¯ects the fact that in Steigmann and Ogden's (1997) theory the thin plate does not behave like a
membrane but instead it is endowed with a ®nite ¯exural sti�ness by allowing B to depend on the
curvature k explicitly.
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